

Mid-size Insert: 8-10 kb Library Creation Protocol

Version Number: 2

Version Date: 03-13-03

Author: Chris Detter, Eileen Dalin
Reviewed by: Jamie Jett, Doug Smith
Approved by: Paul Richardson, Chris Detter

Summary

To construct a randomly sheared, non-biased library containing 8-10 kb inserts.

Subcloning---Materials & Reagents

Materials/Reage	ents/Equipment	<u>Vendor</u>	Catalog Number
<u>Disposables</u> Phase Lock Gel Clear Round Bot	tom 2 ml tubes	Eppendorf Eppendorf	0032 005.101 22 36 335-2
<u>Reagents</u> 10X Eco Pol Buf 10mM Nucleix Pi T4 DNA Polymer Klenow Large Fr	us dNTP rase (100U 1U/uL)	New England Bio Labs Amersham Roche New England Bio Labs	US-77212 1004786
Low Melting Poir AgarACE Phenol 5M NaCl Pellet Paint 100% EtOH	nt Agarose	Invitrogen Promega Sigma Ambion Novagen	15517-022 M1743 P4557 9759 69049-3
P21 vector Polyethylene Gly T4 DNA Ligase 10X ligation buffe		JGI Sigma Roche Roche	P-5413 79909 included
Equipment Hydroshear Hydroshear Larg Syringe Hydroshear Was -80C freezer -20C freezer Juan vacuum ce	h Kit ntrifuge	Gene Machines Gene Machines Gene Machines Gene Machines	HSH 204007 HAS-S HSH-KT1

Procedure

Shearing:

1. Transfer to **well-labeled** Eppendorf tube 5 to 10 μ g of non degraded DNA; Final volume 100 μ l.

Dry 200 µl of DNA down to 100 µl needed

- 2. Shear with large assembly.
 - a. Volume = 100 µl
 - b. # of cycles = 25 cycles
 - c. Speed code = 9 (may vary by source of DNA)
- 3. Collect sample and place on ice until all samples are complete

Blunt End Repair:

1. To 95 µl of sheared DNA, add:

	<u> 1 Rxn</u>
10x Klenow Buffer	13 µl
10mM dNTPs	10 µl
T4 DNA Polymerase (1U/µI)	6 µl
Klenow Fragment (5000U/mL)	<u>6 µl</u>
	35 µl

^{**} Make master mix if needed, keep on ice.

- 2. Cap well-labeled tube, Vortex, and Spin Down.
- 3. Incubate:
 - a. RT for 40 minutes
 - b. 70°C for 15 minutes
 - c. 4°C for 10 minutes
 - d. Freeze at -20°C for 30 min before running gel or store overnight @ -20°C

Size Fractionation/Gel Separation:

Pulse Field Conditions:

- a. % Agarose---- 1.0% Low Melting Point Agarose
- b. Buffer---- 0.5x TBE
- c. Temperature-- 14°C
- d. Voltage----- 6 V/cm
- e. Pulse----- 2.0-4.0 sec
- f. Run Time---- 15 hrs
- g. Angle----- 120°

- 1. Add 10-20 µl loading dye to sample.
- 2. Load onto 1% LMP agarose gel (0.5x TBE).
- 3. Run gel overnight with above parameters (run with size "Marker 2").
- 4. Remove gel from pulse field platform.
- 5. Stain gel with an Ethidium bromide solution in distilled water (0.5 μg/ml) for 30 minutes.
- 6. Destain gel in distilled water for 1.5-2 hours.
- 7. Cut out 8-10kb band and place in **well-labeled** 2 ml round bottom eppendorf tube.

Gel Digestion:

- 1. Place tubes at 65°C to melt gel **completely** (approximately 5 to 20 minutes).
- 2. Place at 42°C to equilibrate for 3 to 5 minutes.
- 3. Add 6-8 µl AgarACE to each tube.
- 4. Mix well and Spin down.
- 5. Incubate at 42°C for 20 minutes.

Phenol Extraction:

- 1. Prepare phase lock tubes, spin at 10,000 RPM for 2 min.
- 2. Measure sample volume.
- 3. Add an equal amount of phenol (~1 ml).
- 4. Vortex well for 15-30 sec.
- 5. Add to well-labeled phase lock tubes.
- 6. Spin tubes for 5 minutes at 10,000 RPM.
- 7. Pull off (top) aqueous layer into well-labeled 2 ml round bottom tube.

EtOH ppt:

- 1. Measure sample volume.
- 2. Add 1/10 volume of 1M NaCl, 1.5 µl pellet paint, and 2.5 volumes of 96% EtOH.
- 3. Vortex well and spin to collect.
- 4. Place at -80°C for at least 30 minutes.
- 5. **Pre-chill microcentrifuge to 4°C,** this takes at least 15 min.
- 6. Spin at 13,500 rpm for 20 minutes at 4°C.
- 7. Dump off supernatant-Discard, keep an eye on the pink pellet.
- 8. Wash pellet with 200 µl 96% EtOH.
- 9. Pull off supernatant being careful of "the wiley pellet".
- 10. Dry pellet in vacuum for 5 min. at medium heat (combine pellets after drying if needed).
- 11. Resuspend pellet in 22 µl T0.1E; vortex and spin down sample.
- 12. Place at 50°C for 5 minutes to fully resuspend pellet.
- 13. QC 2 µl of sample on 1% agarose gel for size and concentration.

Ligation:

1. Make up p21/10X/T4 ligation buffer cocktail.

1x 0.3 μl p21 0.8 μl 10X Buffer 0.6 μl T4 DNA ligase 0.7 μl H₂O **2.4 μl**

** Make master mix if needed, keep on ice.

- 2. Add 4.4 µI of purified DNA to the bottom of a clean, well-labeled 1.5 ml tube.
- 3. Aliquot **2.4** µI of ligation cocktail to the bottom of the tube.
- 4. Add **1.2 µI** of 30% PEG to the bottom of the tube.
- 5. MIX WELL, spin to collect.
- 6. Incubate overnight at 16°C.

Phenol Extraction:

- 1. Prepare phase lock tubes, spin at 10,000 RPM for 2 min.
- 2. Bring sample volume up to 50 µl with T0.1E (42 µl).
- 3. Add an equal volume (50 µl) of phenol.
- 4. Vortex well for 15-30 sec.
- 5. Add to **well-labeled** phase lock tubes.
- 6. Spin tubes for 5 minutes at 10,000 RPM.
- 7. Pull off (top) agueous layer into clean, well-labeled 1.5 ml tube.

EtOH ppt:

- 1. Add 1/10 volume 1M NaCl, 1.5ul pellet paint, and 2.5 volumes of 96% EtOH.
- 2. Mix well, spin to collect.
- 3. Place at -80°C for at least 30 minutes.
- 4. **Pre-chill microcentrifuge to 4°C**, this takes at least 15 min.
- 5. Spin at 13,500 rpm for 20 minutes at 4°C.
- 6. Dump off supernatant-Discard, keep an eye on the pink pellet.
- 7. Wash pellet with 200 µl of 96% EtOH.
- 8. Pull off supernatant being careful of "the wiley pellet".
- 10. Dry pellet in vacuum for 5 min. at medium heat.
- 11. Resuspend pellet in 20 µl T0.1E; vortex and spin down sample
- 12. Place at 50°C for 5 minutes to fully resuspend pellet.
- 13. Transform immediately or store at -20°C.

Transformation---Materials & Reagents

Materials/Reagents/Equipment	<u>Vendor</u>	Catalog Number
<u>Disposables</u> Gene Pulse Cuvette 0.1 cm electrode gap Falcon 14mL Polypropylene tube Cryogenic Vial LB KAN 30 X-Gal Plates	BioRad Becton Dickinson Corning Teknova	165-2089 352059 430289 L4908
<u>Reagents</u> ElectroMAX DH10B Cells SOC Medium	Invitrogen Teknova	18290015 0166-10
Equipment -80C freezer -20C freezer		
Gene Pulser II Pulse Controller Plus	BioRad BioRad	

Transformation:

Equipment Settings (BioRad Pulse Controller):

Low range: 200
High range: ∞
Capacitance: 25
Voltage: 1.8 kV

- 1. Place on ice: well-labeled eppendorf tube and cuvette.
- 2. Thaw ElectroMAX DH10B competent cells on ice.
- 3. To the appropriately labeled, COLD Eppendorf tube; add 2 µl of ligation product.
- 4. Once thawed, mix competent cells by **swirling** with pipette tip a few times
- 5. Add 50 µl eDH10B competent cells to the Eppendorf tube containing ligation.
- 6. Mix by **swirling** with pipette tip a few times
- 7. Transfer solution to the bottom groove of the COLD cuvette and **tap** on tabletop a few times to settle solution to the bottom (no bubbles).
- 8. Electroporate at 1.8 kV.
- 9. Transfer cell solution IMMEDIATELY to 950 μ I of RT SOC (make sure SOC is clear, i.e. no growth).

(Transfer electroporation within 10 seconds.)

- 10. Rinse cuvette with 50 µl of the same SOC mixture you just added the cells to.
- 11. Incubate within rotating wheel at 37 °C for 1 hour.
- 12. After 1 hour incubation, place transformation on ice (no longer than one hour) until ready to plate on agar plates.

Plating:

- 1. Before the 1 hour is up, prepare one **well-labeled** LB/KAN 30 x-gal (30 μg/ml) agar plate per library by letting them warm to 37°C in an incubator to dry.
- 2. After 1 hour, plate ~30 μl of transformation glycerol mixture onto the appropriately labeled bioassay.
 - First pipette ~ 500 μl SOC onto the center of the plate, then add 30 μl of transformation to the center with the SOC.
 - Spread in a small circular motion at first to help mix, and then spread evenly across the entire plate.
- 3. Then make a 10% glycerol transformation stock (139 μ l 80% glycerol + remaining transformation (970 μ l = ~ 1109 μ l gly. trans. stock). Cap, then mix by inverting several times.
- Store transformation glycerol mixture immediately @ -80 °C.
- 5. Incubate the plates in 37°C incubator for 16-18 hrs.
- 6. Count colonies and determine the complexity of ligation reaction (total # of colonies in ligation).

Insert size QC---Materials & Reagents

Materials/Reagents/Equipment	<u>Vendor</u>	Catalog Number
<u>Disposables</u> 96 well PCR plate		
Reagents Templiphi 10000 rxn kit Denaturation Buffer	Amersham Amersham	25-6400-01 included
SWA I 10X Buffer 3 100X BSA	New England Biolabs New England Biolabs New England Biolabs	R0604L included included
<u>Equipment</u> Thermocycler PE9700		

Rolling Circle Amplification:

Denaturation

- 1. Dispense 10 μl of 1x Denaturation Buffer into 96 well sample PCR plate.
- 2. Place in centrifuge for quick spin down.
- 3. Make a visual CHECK to make sure all plates have buffer.
- 4. Using disposable tips, pick 1 colony (white) into each well.
- 5. Mix and carefully pull out tips.
- 6. Place in centrifuge for quick spin down.
- 7. Seal plate with Robbins plate seal.
- 8. Place plate on thermocycler for 5 min at 95°C.
- 9. After 5 min denaturation, immediately place plate on ice.
- 10. Cool on ice for at least 5 minutes.

Amplification

- 1. Remove RCA mix from -80°C freezer before initial denaturation to allow it to thaw on ice.
- 2. Gently mix when thawed.
- 3. Dispense 10 µl of RCA mix into each well of the sample PCR plate.
- 4. Place in centrifuge for quick spin down
- 5. Make a visual check that all plates have RCA mix
- 6. Seal plate with Robbins plate seal
- 7. Place 96 well PCR plate into thermocycler
- 8. PCR program: 30°C for 20 hours; 65°C for 10 min; 4° hold

Digestion

- 1. Aliquot 5 µl of RCA product into a 96 well PCR plate.
- 2. Spin down plate.
- 3. Make a visual check that all wells have RCA product.

4. Make digestion cocktail:

1x	<u>120x</u>
10X buffer1.0 μl	120 µl
100X BSA0.1 μl	12 µl
SWA I1.0 µl	120 µl
H ₂ O2.9 μl	<u>348 µl</u>
5.0 µl	600 µl

- 5. Dispense 5 µl of digestion cocktail into each well
- 6. Seal top, Vortex & spin down plate
- 7. PCR program: 25°C for 4 hours; 65°C for 20 minutes; 4°C hold
- 8. Add 10 µl loading dye to samples
- 9. Vortex and spin down samples
- 10. Load 15 μ I of digested RCA product onto a 1% agarose gel with size standards (Save the remaining 5 μ I to use in case there is a problem with the QC gel. Can toss after gel is imaged).
- 11. Run for ~30 minutes at 120V.
- 12. Check for inserts at 8-10 kb

Reagent/Stock Preparation

T0.1E

40 μ I 0.5M EDTA 2 ml 1M Tris-HCI 197.960 ml H₂0 pH 8.0

30% PEG

3 g Polyethylene Glycol 10 ml H_2 0